Cookie Consent by Free Privacy Policy website Ultracool Dwarf and the Seven Planets
february 22, 2017 - e.s.o.

Ultracool Dwarf and the Seven Planets

Notes As well as the NASA Spitzer Space Telescope, the team used many ground-based facilities: TRAPPIST–South at ESO’s La Silla Observatory in Chile, HAWK-I on ESO’s Very Large Telescope in Chile, TRAPPIST–North in Morocco, the 3.8-metre UKIRT in Hawaii, the 2-metre Liverpool and 4-metre William Herschel telescopes at La Palma in the Canary Islands, and the 1-metre SAAO telescope in South Africa. 2] TRAPPIST–South (the TRAnsiting Planets and PlanetesImals Small Telescope–South) is a Belgian 0.6-metre robotic telescope operated from the University of Liège and based at ESO’s La Silla Observatory in Chile. It spends much of its time monitoring the light from around 60 of the nearest ultracool dwarf stars and brown dwarfs (“stars” which are not quite massive enough to initiate sustained nuclear fusion in their cores), looking for evidence of planetary transits. TRAPPIST–South, along with its twin TRAPPIST–North, are the forerunners to the SPECULOOS system, which is currently being installed at ESO’s Paranal Observatory. [3] In early 2016, a team of astronomers, also led by Michaël Gillon announced the discovery of three planets orbiting TRAPPIST-1. They intensified their follow-up observations of the system mainly because of a remarkable triple transit that they observed with the HAWK-I instrument on the VLT. This transit showed clearly that at least one other unknown planet was orbiting the star. And that historic light curve shows for the first time three temperate Earth-sized planets, two of them in the habitable zone, passing in front of their star at the same time! [4] This is one of the main methods that astronomers use to identify the presence of a planet around a star. They look at the light coming from the star to see if some of the light is blocked as the planet passes in front of its host star on the line of sight to Earth — it transits the star, as astronomers say. As the planet orbits around its star, we expect to see regular small dips in the light coming from the star as the planet moves in front of it. [5] Such processes could include tidal heating, whereby the gravitational pull of TRAPPIST-1 causes the planet to repeatedly deform, leading to inner frictional forces and the generation of heat. This process drives the active volcanism on Jupiter's moon Io. If TRAPPIST-1h has also retained a primordial hydrogen-rich atmosphere, the rate of heat loss could be very low. [6] This discovery also represents the largest known chain of exoplanets orbiting in near-resonance with each other. The astronomers carefully measured how long it takes for each planet in the system to complete one orbit around TRAPPIST-1 — known as the revolution period — and then calculated the ratio of each planet’s period and that of its next more distant neighbour. The innermost six TRAPPIST-1 planets have period ratios with their neighbours that are very close to simple ratios, such as 5:3 or 3:2. This means that the planets most likely formed together further from their star, and have since moved inwards into their current configuration. If so, they could be low-density and volatile-rich worlds, suggesting an icy surface and/or an atmosphere.

Related news

july 11, 2023
june 27, 2023
may 03, 2023

The European Southern Observatory’s Extremely Large Telescope (ESO’s ELT) is a revolutionary ground-based telescope that will have...

This cloud of orange and red, part of the Sh2-284 nebula, is shown here in spectacular detail using data from the VLT Survey Teles...

Using ESO’s Very Large Telescope (VLT), researchers have found for the first time the fingerprints left by the explosion of the fi...

You might be interested in

april 27, 2023
march 29, 2023
march 21, 2023

For the first time, astronomers have observed, in the same image, the shadow of the black hole at the centre of the galaxy Messier...

Using the #atacamalargemillimetersubmillimeterarray (ALMA), of which #eso is a partner, astronomers have discovered a large reserv...

Using ESO’s Very Large Telescope (VLT), two teams of astronomers have observed the aftermath of the collision between NASA’s Doubl...