Cookie Consent by Free Privacy Policy website Ford, Virginia Tech go undercover to develop signals that enable autonomous vehicles to communicate with people
settembre 19, 2017 - Ford

Ford, Virginia Tech go undercover to develop signals that enable autonomous vehicles to communicate with people

Comunicato Stampa disponibile solo in lingua originale. 

Today, a simple head nod or hand wave from a driver is usually enough to indicate it’s okay for a pedestrian to cross the street, but in an autonomous vehicle future, how will a self-driving car with no human driver communicate with pedestrians, cyclists or humans operating other cars on the road?

Looking to prepare for this eventual reality, #ford Motor Company partnered with Virginia Tech Transportation Institute, to conduct a user experience study to test out a method for communicating a vehicle’s intent by soliciting real-world reactions to a self-driving car on public roads.

“Understanding how self-driving vehicles impact the world as we know it today is critical to ensuring we’re creating the right experience for tomorrow,” said John Shutko, Ford’s human factors technical specialist. “We need to solve for the challenges presented by not having a human driver, so designing a way to replace the head nod or hand wave is fundamental to ensuring safe and efficient operation of self-driving vehicles in our communities.”

As part of Ford’s efforts to ensure autonomous vehicles can safely share the road with humans, the joint research project set out to investigate the most effective means for the vehicle to communicate. The team considered using displayed text, but that would require people all understand the same language. The use of symbols was rejected because symbols historically have low recognition among consumers.

In the end, the researchers decided lighting signals are the most effective means for creating a visual communications protocol for self-driving vehicles. As light signals for turning and braking indication are already standardized and widely understood, they determined the use of lighting signals is best to communicate whether the vehicle is in autonomous drive mode, beginning to yield, or about to accelerate from a stop.